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Synthesis of enantiopure concave (+)-avenaciolide
and (�)-canadensolide skeletons
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Abstract—Simultaneous regio- and chemoselective reduction of the carboxyl group of (2S,3S)-tetrahydro-3-hydroxy-5-oxo-2,3-
furandicarboxylic acid (garcinia acid), isolated from plant sources in large amounts, has been carried out to reach the core concave
bislactone structures of fungal metabolites (+)-avenaciolide and (�)-canadensolide in one and two steps, respectively.
� 2007 Elsevier Ltd. All rights reserved.
Natural and synthetic optically active c-butyrolactones
and related bislactones have attracted much attention
due to their biological and functional properties.1 Also,
these molecules play key roles as building blocks for the
syntheses of many types of natural product and poten-
tial drugs.2 The favourable cis/trans orientation of adja-
cent C2 and C3 carboxyl groups, the matching absolute
configurations and appropriate number of carbon atoms
make 1 and 2 synthetically under utilised naturally
occurring lactones, which can be isolated in large
amounts from cheap plant sources3 (Fig. 1). They could
be precursors for the synthesis of c-butyrolactone-based
natural products.
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Figure 1.
Among these, bislactones (+)-avenaciolide (3),
(+)-isoavenaciolide (4), ethisolide (5), (�)-canadensolide
(6), xylobovide (7), sporothriolide (8) and (+)-dihydro-
canadensolide (9) are challenging and fascinating targets
due to their concave structure, with all cis stereochemis-
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try of the adjacent methine protons.4 Almost all the
known methods for the construction of the concave
skeleton are tedious, time consuming and often result
in racemic products.5

A retrosynthetic analysis of 3 and 6 from 1 depicts the
involvement of 12 and 14 to be obtained by the selective
reduction of C3 and C2 carboxyls independently. The
Swern oxidation of 12 and 14 followed by the nucleo-
philic addition of alkyl donor synthons, subsequent
deoxygenation, followed by the introduction of an a-
methylene group would be expected to give 3 and 6,
respectively (Scheme 1).

Taking advantage of the presence of the tertiary
hydroxyl group at C3 of 1, a regioselective reduction
was successfully carried out.6 Treatment of dimethyl
(2S,3S)-tetrahydro-3-hydroxy-5-oxo-2,3-furandicarboxy-
late (16) with borane dimethyl sulfide (BMS) in tetra-
hydrofuran and catalytic NaBH4 resulted in the
formation of only 12, methyl (2S,3R)-tetrahydro-
3-hydroxy-3-(hydroxymethyl)-5-oxo-2 furancarboxy-
late. Attempted chromatographic purification of 12 over
silica gel afforded 10, (3aR,6aS)-3a-hydroxytetrahydro-
furo[3,4-b]furan-2,6-dione, the (+)-avenaciolide skeleton
as a sharp melting solid (mp, 136–138 �C) in 81% yield,
½a�20

D +20.64, (c 0.28, H2O) (Scheme 2). Acetylation of
crude 12 afforded 17.

On the other hand selective reduction7 of the C2
carboxyl of 1 was carried out after protection of
the C3 geminal carboxylate and hydroxyl using
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Figure 2. The ORTEP diagram of 10.
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trichloroacetaldehyde.8 Reduction of 18 (5S,6S)-4,8
dioxo-2-(trichloromethyl)-1,3,7-trioxaspiro[4,4]nonane-
6-carboxylic acid using BMS/THF followed by purifica-
tion over silica gel directly resulted in the isolation of
11 (3aS,6aS)-3-hydroxytetrahydrofuro[3,4-b]furan-2,4-
dione, the canadensolide skeleton as a crystalline solid
(mp 143–145 �C, 72% yield), ½a�20

D �89.067 (c 0.1, H2O)
(Scheme 3).
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Figure 3. The ORTEP diagram of 11.
Structures 10 and 11 were confirmed on the basis of their
IR, 1H, 13C NMR and mass spectra. The 1H NMR spec-
tra of 10 showed two double doublets at 2.95 d and 4.35
d corresponding to the methylene protons at C3 and C4,
a singlet at 5.05 d corresponding to the C6a methine
proton, whereas 11 showed a double doublet at 3.1 d,
a multiplet at 4.6 d and a doublet of doublets at 5.03 d
corresponding to protons at C3, C6, C6a, respectively.

A single crystal X-ray analysis confirmed the concave
nature and absolute configuration of 10 and 11 (Figs.
2 and 3).
Reduction of 19, a diastereomer of 16, using BMS/
NaBH4 showed no preference for either of the carboxyl
groups, but gave an inseparable mixture of 20 and 21 in
equal amounts. Attempted separation of 20 and 21 using
column chromatography resulted in the isolation of 22
methyl (2R)-2-hydroxy-2-[(3S)-3-hydroxy-5-oxotetrahy-
dro-3-furanyl] ethanonate.

Structure 22 was confirmed on the basis of IR, 1H, 13C
NMR and mass spectra, {½a�20

D +21.516 (c 0.1, CHCl3)}
(Scheme 4).
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The poor selectivity observed in the case of 19, where the
C2–C3 carboxylic groups are trans to each other, pro-
vides an explanation for the site selectivity reported
earlier.6

Thus we suggest that the site selectivity in the case of 16
over 19 could be explained by an activation energy dif-
ference between the two possible intermediates 23 and
24, where the boron atom intramolecularly coordinates
the carbonyl oxygens to form the five-membered or
the six-membered intermediates 23 and 24 (Fig. 4).
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Figure 4.
Intermediate 24 would experience severe 1,3-diaxial
interaction between the OCH3 and the hydrogen on
the boron atom. Also the steric interaction of C3 ester
group with the OCH3 group as well as with the
hydrogen on the boron atom is much more severe. This
is because of the short boron–oxygen bond length.7

In the case of 19, the possibility of forming five- and six-
membered intermediates exists (25 and 26). However, 26
is conformationally mobile and conformer 26b would be
preferred as there are three diaxial interactions in 26a
and only two in 26b (Fig. 4). It is evident that there
are only two 1,3-diaxial interactions in the case of 26
and three in 24 clearly favouring the formation of 26.

In conclusion, an expeditious semisynthetic route for the
construction of concave molecules 10 and 11 has been
developed from abundantly available 1. An extended
mechanistic explanation for the selective reduction of 1
and 2 using BMS/NaBH4 is provided. Synthesis of 3,
6 and several chiral c-butyrolactones based molecules
with matching stereochemistry to that in 1 and 2 is
underway.
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